Using remote sensing for crop area estimation

Javier.gallego@jrc.it

Joint Research Centre (JRC)
IPSC - Institute for the Protection and Security of the Citizen
Ispra - Italy

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Satellite images (possibly classified) can be used as

- Basic information for area estimation
- Covariates for a posteriori accuracy improvement
- Graphical support for ground work
- Tool to improve the sampling design of a ground survey (stratification)
- Indication for quality control of a ground survey

Area is estimated by counting pixels in a classified image
 Sources of area estimation error:

Mixed pixels (boundary). Error depends on
Resolution, geometry (\% of mixed pixels)
Relative radiometry of different classes
"suitable resolution": most pixels should be pure Misclassification of pure pixels

Direct area estimation by photo-interpretation (polygon area measurement)

- Example: CORINE Land Cover
- By photo-interpretation of TM images
- Nearly homogeneous rules in most European Countries
- Nomenclature of 44 classes
- Minimum polygon size: 25 ha
- Some mixed classes such as agro-forestry, complex agricultural patterns, etc.
- In the early times of CLC (90's), it was often presented as a source of direct land cover area estimators
- But further analysis has shown that this is only acceptable if there is no alternative

CORINE Land Cover 2000

confusion matrix with "pure LUCAS points" (excluding points too close to boundaries)

LUCAS								¢	-
artificial	1602	83	288	44	26	20	94	51	2208
agriculture	815	13892	2692	341	90	65	455	268	18618
Pasture	306	579	5678	194	107	44	544	409	7861
Broadleaved forest	98	85	276	3411	411	597	477	149	5504
Coniferous	162	74	216	541	7992	1675	354	597	11611
Mixed forest	74	36	101	596	1478	1056	156	262	3759
Woddland-shrub-heath	80	158	1330	603	1402	422	2192	795	6982
heterogeneous	387	2357	2087	705	167	127	593	147	6570
other	24	30	447	20	178	48	287	3753	4787
Total	3548	17294	13115	6455	11851	4054	5152	6431	67900

LUCAS CLC2000	$\begin{aligned} & \text { D. } \\ & \text { 言 } \\ & \text { 高 } \end{aligned}$												$\underset{\substack{\mathbb{\sim}}}{ }$
Urban	25,1	23,4	7,2	0,4	1,7	0,4	26,6	2,3	1,3	0,9	8,1	1,7	0,8
Other artificial	12,8	27,1	5,4	0,3	0,4	0,2	28,3	4,6	2,4	1,4	7,7	6,3	3,1
Arable	1,0	3,2	73,7	0,7	1,0	0,5	10,7	2,5	0,9	0,7	3,2	0,9	1,0
Vineyard	1,5	3,6	14,6	53,3	4,0	2,8	6,5	2,4	1,1	0,4	8,3	0,9	0,7
Fruits	1,5	3,0	13,7	1,8	54,2	3,1	5,9	3,5	2,0	0,2	7,6	1,7	1,8
Olive	0,9	2,4	10,1	2,2	3,2	64,5	4,3	2,4	0,8	0,7	6,6	1,0	0,7
Pasture	0,8	2,4	11,8	0,1	0,3	0,1	62,0	3,8	2,1	0,9	10,1	4,0	1,5
Broadleaved forest	0,3	1,3	2,7	0,2	0,3	0,2	5,9	56,6	7,9	10,9	10,4	0,8	2,5
Coniferous	0,1	1,6	1,3	0,1	0,1	0,1	2,2	5,1	65,4	14,8	3,5	0,8	5,1
Mixed forest	0,3	1,5	1,8	0,1	0,1	0,1	2,9	15,4	38,8	27,2	4,5	0,8	6,6
Woddland-shrub-heath	0,1	1,2	1,7	0,1	0,3	0,6	11,1	9,0	23,0	7,0	34,0	5,8	6,2
Bare land	0,1	0,2	0,7	0,1	0,4	0,3	11,2	0,9	2,7	0,6	21,4	58,5	2,9
Water	0,3	0,7	0,6	0,0	0,0	0,0	5,1	1,0	7,3	2,0	5,0	1,1	76,9
Heterogeneous	1,8	3,6	29,6	2,9	3,4	3,8	24,8	10,6	3,5	2,6	10,7	1,1	1,5
Burnt	0,0	0,0	3,6	0,0	0,0	0,0	7,1	10,7	39,3	10,7	28,6	0,0	0,0

Fine scale profiles of aggregated CLC2000 classes, based on LUCAS 2001

Land cover change: Example of straight estimation

Consider CORINE Land Cover (CLC90) and CLC2000 Both layers have the same geometry in an area of 3.5 Mkm2 Direct overlay gives an "estimate" of $\sim 20 \%$ of change in land cover type
Remaking the photo-interpretation of both layers gives < 5\% change in land cover type.
Probably closer to reality
No sampling error, but
Bias due to
Photo-interpretation errors,
Scale effect.
For this period these figures are acceptable
Because we have no alternative
We should have better figures for 2006-2009

Pixel counting as area estimator

Errors from misclassification of pure pixels No sampling error if complete image
Possible large bias
$\Lambda=$ confusion matrix for the population

$$
\hat{Z}_{c}=\frac{\lambda_{+c}}{\lambda_{++}} D=\frac{\text { pixels classified as } c}{\text { total pixels }} \text { area of the region }
$$

Commission error $\varphi_{c}=1-\frac{\lambda_{c c}}{\lambda_{+c}} \quad$ Omission error $\psi_{c}=1-\frac{\lambda_{c c}}{\lambda_{c+}}$
relative bias $\quad b_{c}=\frac{\lambda_{+c}-\lambda_{c+}}{\lambda_{c+}}=\varphi_{c} \frac{\lambda_{+c}}{\lambda_{c+}}-\psi_{c}$

Rule of thumb: do not use pixel counting if your expected commission/omission error is more than twice the targeted accuracy.
Example: if you want an accuracy of $\pm 5 \%$ (semiconfidence interval?), do not use pixel counting unless you are confident that your classification accuracy is $>90 \%$.
Gaussian distribution does not protect against bias or subjectivity

Pixel counting as area estimator
Example with maximum likelihood supervised classification (discriminant analysis)

Region of $\mathbf{\sim 1 0 0 , 0 0 0} \mathrm{km}^{2}$

Area of cereals ~ 2 Mha

Accuracy of classification ~ 70\%
Tuning the parameters (a priori prob.), we can easily get an area of pixels classified as cereals between 1.5 and 2.5 Mha.
If we think the area is 2.3 Mha, we will tune the classification to get that figure.
It may be right, but we are using RS as a "sexy dress" to make our belief more attractive.
There may be a tendency to underestimate changes if we use historical statistical data as a reference

Pixel counting as area estimator (2)

We can tune the parameters to balance commission and omission errors on a test sample
This gives a good protection against bias if the sample is statistically valid (random, systematic, etc...)
Random sample \neq hap-hazard set
We are implicitly using a calibration estimator.
We better use a calibration estimator explicitely.

Bogota, 25-28 November 2008

Bias \approx Commission error - omission error
If we have a confusion matrix, we can correct the bias. Cannot we?

Ex: Photo-interpretation made for the EU LUCAS survey Raw confusion matrix (simplified nomenclature):

Ground Strata	Arable	Perm. Crops	Perm. Grass	Forest Wood	Other	Total	Comm. Error \%	Omis. Error \%
Arable land	67313	1751	17597	2035	2760	91456	32.9	8.3
Perm. Crops	651	9516	546	573	287	11573	16.9	21.7
Perm. Grass	4940	658	26969	3693	4244	40504	28.6	43.1
Forest \& Wood	308	185	1962	16248	1277	19980	16.4	28.5
Other	195	47	299	186	2925	3652	6.3	74.5
Total	73407	12157	47373	22735	11493	167165		

Let us look at the class "forest and wood"
Commission < Omission \Rightarrow We should increase the estimates by ca. 12\% Right?

Bias and confusion matrix

But in LUCAS the sampling rate of the non-agricultural strata is 5 times lower
the corresponding rows of the confusion matrix should be multiplied by 5

Weighted confusion matrix

Ground Strata	Arable	Perm. Crops	Perm. Grass	Forest Wood	Other	Total	Comm. Error \%	Omis. Error \%
Arable land	67313	1751	17597	2035	2760	91456	32.0	10.7
Perm. Crops	651	9516	546	573	287	11573	15.7	27.3
Perm. Grass	4940	658	26969	3693	4244	40504	24.0	52.2
Forest \& Wood	1540	925	9810	81240	6385	99900	21.1	8.2
Other	975	235	1495	930	14625	18260	12.8	48.3
	75419	13085	56417	88471	28301	261693		

Commission > Omission \Rightarrow We should reduce the estimates by ca. 13\%

Confusion matrices should be computed on a proper sample of test pixels
Correctly extrapolated
Independent of the training pixels
(everybody knows, but...)
Spatially uncorrelated (this is sometimes forgotten)
Not very important for robust classifiers
The proper way to use a confusion matrix for area estimation is the calibration estimator (extensive bibliography)
The calibration estimator inherits bias from ground data, not from image classification
It has a sampling error that depends on the size of the test set.

Combining ground survey and satellite images to improve the accuracy of estimates

Main approaches: calibration and regression estimators. Common features:
combine accurate information on a sample (ground survey) with less accurate information in the whole area, or most of it.
Unbiasedness is provided by the ground survey.
The more accurate the ground survey, the higher the added value of RS.
Variant if ground data are too difficult/expensive (e.g: forest
in very large areas):
Accurate information from high or medium resolution on a sample of images Less accurate information from coarse resolution (AVHRR, VEGETATION, MODIS, MERIS)

A : Confusion matrix on a sample of test pixels

Λ_{g} : ground truth totals
Λ_{c} : pixels classified by class
Λ : Confusion matrix on the population
Λ_{g} : ground truth totals (unknown to be estimated)
Λ_{c} : pixels classified by class
Error matrices ${ }_{\Pi_{c}}(g, c)=\frac{\lambda(g, c)}{\lambda(g,+)}$

$$
P_{c}(g, c)=\frac{a(g, c)}{a(g,+)}
$$

$$
\begin{array}{r}
\Pi_{g}(g, c)=\frac{\lambda(g, c)}{\lambda(+, c)} \\
P_{g}(g, c)=\frac{a(g, c)}{a(+, c)}
\end{array}
$$

Calibration estimators with confusion matrices

Straightforward identities:

$$
\begin{array}{ll}
\Lambda_{g}=\Pi_{g} \Lambda_{c} & \Lambda_{g}=\Pi_{g} \Lambda_{c} \\
A_{g}=P_{g} A_{c} & A_{c}=P_{c} A_{g}
\end{array}
$$

Estimators:

$$
\hat{\lambda}_{d i r}(g)=P_{g} \Lambda_{c} \quad \lambda_{i n v}=P_{c}^{-1} \Lambda_{c}
$$

Relative efficiency of the same order of regression estimator.

EUROPEAN COMMISSION
Satellite images to improve ground

Y: Ground data (\% of wheat)
X: Classified satellite image (\% od pixels classified as wheat)

$$
Y=a+b X+\varepsilon
$$

Regression estimator

$$
\hat{y}_{\text {reg }}=\bar{y}+b\left(\mu_{x}-\bar{x}\right)
$$

Difference estimator if slope b pre-defined: less efficient, but more robust.

Ratio estimator if $\quad a=0$

Regression estimator

Relative efficiency (coarse approximation)

$$
\text { rel eff } \sim \frac{1}{1-r_{x y}^{2}}
$$

better approximation:

$$
V\left(\hat{y}_{\text {reg }}\right)=\frac{N-n}{N \times n}\left(1+\frac{1}{n-3}+\frac{2 G_{x}^{2}}{n^{2}}\right) \sigma_{y}^{2}\left(1-\rho^{2}\right) \quad G_{x}=\frac{k_{3 x}}{\sigma_{x}^{3}}
$$

An efficiency $=2$ means that :
n segments + regression $\sim 2 n$ segments (only ground survey)
Criterion to assess cost-efficiency

Relative efficiency of the same order of calibration estimator.
Regression is not very suitable for point sampling: only 4 points in the regression plot: $(0,0),(0,1),(1,0),(1,1)$

$\mathrm{n}=39$ but unreliable regression (maximum Belsley's $\boldsymbol{\beta}=4.7$)
\Rightarrow use tools to detect influential observations

$\mathrm{n}=24$ but reliable regression
(maximum Belsley's $\boldsymbol{\beta}=0.8$)

Caution!!!!

X must be the same variable in the sample and outside the sample
Use all pixels (including mixed pixels) to compute X on the sample Do not use the same sample for training pixels and for regression, or at least use a classification with a similar behaviour for training and test pixels (few parameters to estimate)

If this is not respected, regression estimator can degrade the ground survey estimates

In the 80's-early 90's: cost efficiency was insufficient Cost of images
Cost/time of image processing.
In the late 90 's RS area estimation became nearly cost-efficient with Landsat TM, but.... no continuity of the mission.
Timeliness: 1-2 months after ground survey estimates
Autonomy of official organisations.
Currently new image types need to be better assessed (e.g: DMCII)

Small area

Small area estimators use

The sample inside the area (possibly $\mathrm{n}=0$)
A covariable inside the area (classified satellite image)
The link between variable and covariable outside the area.

Small area estimators are modeldependent

Improving an area sampling frame with satellite images
 Stratification: strata defined by an indicative land cover pattern
 Two-phase sampling: large random or systematic pre-sample and subsampling with unequal probability.

Stratification and two-phase (double) sampling efficiency is generally moderate (often between 1.5 and 2) but the operation is not too expensive and is valid for several years.

Area sampling frame of square segments

Largest piece strategy

Small pieces are excluded from estimation. Large pieces receive the same weight as a full square grid cell, and compensate in some way.

Other options, e.g: Attribute each square to a stratum with an "agricultural abundance indicator

Splitting strategy

Squares sampled with the probability corresponding to the largest piece.
Stratum $B A=\{$ pieces in B sampled with the probability corresponding to A$\}$
\rightarrow large number of strata for estimation

Not recommended

Efficiency of stratification

How much did we gain with the stratification?

$$
E f f_{s t r}=\frac{V_{\text {nostr }}}{V_{\text {str }}}
$$

$\mathrm{V}_{\text {nostr }}$ Variance that we would have got with the same sample size without stratification.
But we do not have such a sample....
For stratified random sampling:

$$
V_{\text {nostr }}(\bar{y})=\frac{N-n}{n(N-1)}\left\{\operatorname{Var}\left(\hat{y}_{s t}\right)+\left(\sum_{h} \frac{N_{h}}{n_{h}} \sum_{h i=1}^{n_{h}} y_{h i}^{2}\right)-\hat{y}_{s t}^{2}\right\}
$$

Do not use:

$$
V_{\text {nostr }} \neq V_{0}=\left(1-\frac{n}{N}\right) \frac{1}{n(n-1)} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Using images for incomplete stratification in a two-phase sampling

Reminder of LUCAS (Land Use/Cover Area-frame Survey)
Area frame of points (each point is a circel of 3 m .)
Points are unclustered: single stage sampling.
Two-phase sampling:
First phase: systematic sample with 2 km step
Stratification by photo-interpretation of the pre-sample
Subsampling with different rates for each stratum
Observation of the points on the ground (GPS monitoring) Digital pictures from each point (landscape database)

Substituting ground data with remote sensing data

- When a proper ground survey is not possible
- Principles remain the same, with
- A sample of HR-VHR images instead of the ground data (<10 m?)
- A wall-to-wall (complete as much as possible) cover of medium resolution images (TM for example)
- Differences:
- The sampling plan (size of PSUs) has to take into account the size of HR/VHR images.
- The main non-sampling error (commission/omission errors) needs to be assessed:
- Some ground observations, approximately balanced, are better than no ground data at all
- If no ground data at all can be collected, assess commission/omission errors in an area with similar landscape

Square segment and farm sampling by points

