RECOMMENDED METHODS FOR TESTING CANNABIS

MANUAL FOR USE BY NATIONAL NARCOTICS LABORATORIES

UNIVERSAL NATIONS
New York, 1987
CONTENTS

INTRODUCTION .. 1

I. PRODUCTION OF ILLICIT CANNABIS PRODUCTS 4
 A. Herbal products (Marihuana) 4
 B. Resin products (Hashish) 6
 C. Liquid cannabis (Hashish oil) 8

II. DESCRIPTION OF ILLICIT CANNABIS PRODUCTS 10
 A. Names and synonyms for illicit cannabis products 10
 B. Physical appearance and chemical characteristics of illicit cannabis products 10
 1. Herbal products (Marihuana) 10
 (a) Cannabis grown in temperate climate 10
 (b) Cannabis grown in tropical climate 11
 2. Cannabis resin products (Hashish) 12
 3. Liquid cannabis (Hashish oil) 13

III. CHEMICAL CONSTITUENTS OF FORENSIC SIGNIFICANCE 15

IV. THE ANALYSIS OF ILLICIT CANNABIS PRODUCTS 17
 A. Sampling .. 17
 1. Sampling of single package items 18
 2. Sampling of items consisting of more than one package ... 18
 3. Sampling of materials containing large aggregate particles 19
 B. Physical examination 19
 1. Macroscopic characteristics 19
 2. Microscopic characteristics 22
C. Presumptive tests .. 24
 1. Colour tests ... 24
 (a) Fast blue B salt test 24
 (b) The rapid Duquenois test (Duquenois-Levine test) ... 26
D. Thin layer chromatography 27
E. Gas liquid chromatography 30
 1. Packed column technique 30
 2. Capillary column technique 33
F. High performance liquid chromatography 34
 1. Isocratic technique 34
 2. Gradient technique 36
INTRODUCTION

Background

Over the past few years there has been a considerable increase in the number of scheduled substances newly included under international control. This increase reflects a rapid diversification of drugs of abuse, and the consequent increase of regulatory efforts results in turn in a larger number of controlled substances and in better but, at the same time, more stringent national legislation and sentencing provisions. At the same time, the seized quantities of drugs already under control, such as the opiates, cocaine and coca paste, cannabis products, amphetamine and related compounds have also shown an alarming and unprecedented increase in certain regions. This new situation, involving an increase both in the frequency and volume of seizures, presents a challenge not only to national law enforcement authorities, but also to the technical and scientific staff of forensic laboratories.

Owing to the ingenuity of illicit producers and promoters, unexpected new illicit drugs or combinations of drugs appear on the illicit market, requiring rapid and adequate action as well as ingenuity on the part of forensic chemists. Similarly, the increased number of controlled substances and of related legislative provisions place additional pressure on national forensic and narcotic laboratories and their staff. Analysts have to be able to deal with more substances and preparations and to use faster, more accurate and more specific methods of identification and analysis. In addition, the international character of drug trafficking requires the speedy exchange of analytical data between laboratories and law enforcement authorities both on the national and the international levels. Development of internationally acceptable methods of testing would contribute greatly to the achievement of these objectives, and this possibility has been under consideration for some time.

At its eighth special session in February 1984, the Commission on Narcotic Drugs requested the Secretary-General "to investigate the possibility of reaching agreement at the regional and interregional levels on recommended methods of analysis of drugs seized from the traffic". The Commission was of the opinion that closer scrutiny and harmonization of the wide variety of analytical methods in use at the national level would not only ease the task of the staff of national institutions but would also facilitate the exchange of information at regional and interregional levels.

Purpose of the manual

In response to the Commission's request, a group of eleven experts and two consultants was convened in September 1986 by the Division of Narcotic Drugs in Kuala Lumpur at the invitation of the Government of Malaysia. The present manual published by the United Nations Division of Narcotic Drugs reflects the conclusions of the group of experts and has been designed to provide practical assistance to national authorities by describing recommended methods to be used in forensic laboratories for
the identification and analysis of cannabis products. The manual may also serve as a guide to national authorities in assessing existing methods used within their own government and university laboratories.

This manual is the third in a series of similar publications dealing with the identification and analysis of various groups of drugs under international control; it was preceded by manuals on heroin (ST/NAR/6), cocaine (ST/NAR/7) analysis, and will be followed by a similar publication dealing with amphetamine/methamphetamine analysis.

These manuals suggest approaches that may help the forensic analyst to select a technique appropriate to the sample currently being examined. The analyst may then choose to follow any of the methods described in the manual, as each method can be expected to produce reliable analytical information with respect to the samples to which they are applied. Each method has been used for a number of years in reputable forensic laboratories and has been published in the scientific literature. In identifying these methods, the expert group was aware that many other useful and acceptable methods produce worthwhile analysis and information for the forensic analyst, and that a number of other acceptable options are recorded in the forensic scientific literature.

Use of the manual

Few methods are perfect, least of all in forensic drug analysis where the materials under examination are very likely to show significant variation both in their physical form and chemical composition. The choice of methodology and approach to analysis remains within the control of the analyst working within his or her own country. The analyst alone has seen the suspect material and can best judge the correct approach to the problem at hand. Furthermore, the choice of methods may necessarily depend on the availability of reference materials and of instrumentation.

Not all the methods listed need to be applied to all samples of suspected cannabis. Requirements may vary, for example, as a result of local trends in samples encountered, facilities available, and the standard of proof acceptable in the prosecution system within which the analyst works. The more complex methods are needed only for certain forensic requirements, such as quantitation of one of the cannabinoids present in the material, comparison of samples or the development of typology.

In order to establish the identity of any controlled drug, it is suggested that the criteria should be at least two independent analytical parameters. The selection of these parameters in any particular case would take into account the drug involved and the laboratory resources available to the analyst. For example, two uncorrelated TLC systems would count as two parameters. Uncorrelated TLC systems in this context means that either the solvent systems or the coating on the plates are completely different. When possible, three entirely different analytical techniques should be used, for example: colour test and any two of the available chromatography techniques (TLC, GLC or HPLC). The analysis of cannabis products represents a special problem to the forensic chemist.
Because cannabis and cannabis resin are plant material it is mandatory that the analyst includes macroscopic and/or microscopic examination of the material as part of the testing protocol. The choice of the two other techniques or more, is left to the discretion of the forensic chemist.

Attention is also drawn to the vital importance of the availability of textbooks on drugs of abuse and analytical techniques. Furthermore, the analyst must continually keep abreast of current trends in analysis, consistently following current analytical and forensic science literature. For this purpose, attention is drawn to the Multilingual Dictionary of Narcotic Drugs and Psychotropic Substances under International Control (ST/MAR/1), a vital tool for forensic laboratories, and to the Manual on Staff Skill Requirements and Basic Equipment for Narcotics Laboratories (ST/MAR/2), both published by the Division of Narcotic Drugs. The latter publication lists bibliographic references as well as a selection of well-known journals in the field. Analysts should refer to these and to previous manuals in this series for general descriptions of the analytical techniques included in this manual.

Close liaison with national law enforcement and judicial authorities as well as between national narcotic laboratories and those at the regional level can lead to greater awareness of the latest trends in drug presentation, the illicit traffic, smuggling techniques and the preparation of evidence to courts of law. These, in turn, will produce a more meaningful choice of analytical techniques to be applied to the latest submissions.

It is equally important that the latest information on changes in drugs available in the illicit traffic be quickly disseminated. This may often need to be done prior to publication in specialized periodicals dealing with forensic and other chemical analyses, since these publications are available to the forensic community some two to three years after the changes become known. The value of frequently published national reports on the latest information on such changes in drugs and on work being undertaken and analytical results obtained within individual laboratories cannot be over-emphasized.

The Division of Narcotic Drugs would welcome observations on the contents and usefulness of the present manual. Comments and suggestions may be addressed to:

Division of Narcotic Drugs
United Nations Office at Vienna
Vienna International Centre
P.O. Box 500
A-1400 Vienna, Austria
I. PRODUCTION OF ILLICIT CANNABIS PRODUCTS

A. Herbal products (Marijuana)

Cannabis (Cannabis sativa L.) is a plant widely distributed throughout the temperate and tropical zones of the world, and most countries have reported illegal growth and traffic of the herbal products. Large scale illicit cultivation of the cannabis plant to make herbal cannabis products occurs in North and South America, the Caribbean, Africa and South East Asia. The presentation of the herbal material in the illicit traffic varies not only from region to region, but also within the countries of each region.

It is the traditional belief that only the fruiting and flowering tops and leaves of the cannabis plant contain significant quantities of the psychoactive constituents (e.g. tetrahydrocannabinol); they are known as the "drug-containing parts", and generally it is only these parts of the plant that are sold in the illicit traffic. These parts may be stripped from the plant while it remains growing. The central stem and main side stems of the plant are not removed and play no part in the production of illicit cannabis products. Alternately the entire plant may be removed by cutting the main stem at a point below the lowest leaf-bearing side stems. The separated herbal material, or whole plants, are allowed to air dry, usually by being spread out on the ground or, if in relatively small quantity, by being placed in shallow trays. Whole plants can be dried while suspended upside down and when dried, the drug-containing parts of the plant are stripped from the central and main side stems. A wide range of herbal presentations are made depending on the process subsequently used on the dried material. The separated parts may be highly compressed to make blocks of herbal materials (West African and Caribbean cannabis is frequently trafficked in this form). Alternately the cannabis may be left as a loose herbal material (samples from some Central and Southern African countries and from countries of South West and South East Asia are often in this form). A less frequently encountered presentation is produced when the herbal material is rolled into a "corn-cob" shape and wrapped in coarse vegetable fibre (Central Southern Africa).

If a high quality product is to be made for trafficking the fruiting and flowering tops alone are used. They are most often made into sticks; frequently the fruiting and flowering top is tied using twine around a central bamboo cane. Such sticks weigh about 2 grammes (gross), are approximately 8 centimeters long and are known in the illicit traffic as "Buddha-sticks" (South East Asia). Often when seized from the illicit traffic these sticks are found in bundles of up to 20 sticks. Alternately the fruiting and flowering top is often in a small roll wrapped in brown paper (South Africa). These rolls are considerably smaller than the South East Asian type. Usually there is less than 0.5 grammes of cannabis per roll, and there are few, if any, seeds within the material.
High quality product can be made by sieving herbal cannabis to remove those parts of the plant which contain relatively low levels of cannabinoids, or no cannabinoids. Essentially, this removes seeds and all but the most insignificant stem material. All that passes through the sieving process has been derived from the flowering and fruiting tops or the leaves of the cannabis. The material resembles finely chopped herbal material. In the illicit traffic it is known as "Kif". It is a characteristic product of North Africa. Such material has a high cannabis resin content and can be compressed into slabs which bear some physical resemblance to cannabis resin slabs made in the same region. However, when subjected to microscopic examination, such slabs are found to have retained essentially herbal characteristics. This material, whether loose or compressed into small blocks, has the same cannabinoid profile as cannabis resin slabs made in the same region.

An alternative high quality product is Sinsemilla. The word Sinsemilla derives from two Spanish words which mean "without seeds". Sinsemilla is produced by removal of male cannabis plants from the environment of female cannabis plants before the male plant has released its pollen. The female plants never become fertilized and therefore produce no seeds. It is claimed by those involved in the illicit cultivation of cannabis that the resin bearing parts of such plants contain a higher level of the psychoactive chemicals (e.g. THC) than ordinary female plants which have been allowed to become fertilized in the normal way. Forensic analysis would support this contention, Sinsemilla is found to contain higher levels of the cannabinoids, especially THC.

It is worth noting that the removal of male plants from the environment of female plants before fertilization has occurred, has been practiced for many years in, for example, the Indian subcontinent. It was known that if this was not done, the female plants would run to seed, and a very poor yield of "ganja" would be produced. Invariably, however, a few seed bearing flowering tops were present in such material. This may have occurred because cannabis is not entirely a dioecious plant. In any large field of cannabis plants, a number will be monoecious, that is bearing both male and female flowers.

Sinsemilla remains, at the time this booklet was prepared (October 1986), a product cultivated only in the Americas, although seizures of Sinsemilla have also been made outside the Americas. The seized material in these cases had, however, been cultivated within the Americas.
B. Resin products (Hashish)

The production of cannabis resin is centered on two main regions of the world. The countries around the Southern and the Eastern part of the Mediterranean form one region, and the countries of the Indian subcontinent form another. A variety of processes have been used in both regions to make cannabis resin. However, in general, the countries of one region use similar techniques. This has resulted in two "families" of cannabis resin. Countries around the Southern and Eastern parts of the Mediterranean make one group of cannabis resin products, and the countries of the Indian subcontinent produce a second group of products. However, there is some similarity in the methods used to make cannabis resin in both regions, for example, there are methods in both regions in which sieving is an important part of the process.

Resin from a single country within either of these regions will show much more similarity in physical appearance to resin from another country of the same region, than it will to a resin from the other region. (There may be significant differences in the cannabinoid profile of resins from one region).

Cannabis resin from Mediterranean countries

The herbal material is threshed, often against a wall. This process is done to separate the resin producing parts of the plant from those parts which do not produce resin, and are therefore low in psychoactive constituents. Particles of cannabis resin and of cannabis leaves, as well as cannabis seeds become detached from the more fibrous parts of the plant. The latter are discarded. The material is then sieved (seeds and minor fibrous parts are eliminated). The product remaining is now even higher in resin content. At this stage macroscopic herbal characteristics are virtually destroyed, but microscopically the material still exhibits many herbal traits. Physically it resembles a fine powder and at this stage it is compressed into slabs. In some countries (Eastern Mediterranean) the material is placed in cloth bags prior to compression, in other countries (North Africa) cellulose wrappings are added before compression. In one area (North Eastern Mediterranean) the material is trafficked occasionally as this fine powder without having been made into slabs.

Cannabis resin from the Indian Subcontinent

A different approach to the production of cannabis resin is used in the countries of the Indian subcontinent. The fruiting and flowering tops of the cannabis plants grown in the countries of the Indian subcontinent contain high levels of resin, to an extent that makes these parts of the plant sticky to the touch. When the fruiting and flowering tops of these plants are rubbed between the palms of the hand the resin is transferred from the plant to the palm.

Production of cannabis resin in the countries of the Indian subcontinent is, therefore, based on a rubbing or kneading process rather than a threshing process. A variety of methods may be used to achieve this. The ones described here may be taken as representative of the process.
A slow and laborious method involves the resin bearing parts of the cannabis plant being rubbed between the palms of the hand. A thin layer of cannabis resin forms on the palms of the hand as the material is rubbed. When all the resin has been transferred from the batch being rubbed, the plant is discarded (it may be used as a second class product, by for example, being made into an infusion similar to tea). The resin that has transferred to the palms of the hand is removed by scraping with the edge of a metal instrument. It may be transferred to a collecting bowl and the next batch of cannabis is subjected to the rubbing process. Gradually, separated cannabis resin builds up in the collecting bowl. A suitable quantity of the resin is then removed from the bowl and then pressed or rolled into slabs, rods, balls or whatever shape is favoured in the particular locality.

An alternative approach is to rub the flowering and fruiting tops of the cannabis against rubber sheeting. The cannabis resin is transferred to the rubber sheeting and from this it can be scraped off and collected into quantities suitable for production of slabs. This approach can be varied by the person who is harvesting the cannabis resin wearing rubber sheeting, or leather or similar fabric, while walking through a field of cannabis plants. Resin accumulates on the rubber sheeting as it brushes against the fruiting and flowering tops of the plants and, when sufficient has been collected, the sheeting may be scraped clean. Production of slabs, etc. then follows as described above.

The flowering and fruiting tops may be collected in a similar way to that used in herbal cannabis production. These are then allowed to dry, and broken and crushed between the hands into a coarse powder. This powder is then passed through sieves so that it attains a fineness similar to that obtained in the Mediterranean. The fine powder, which is still green, is stored in leather bags for four to five months until the weather becomes hot again. The powder is then exposed to the sun for a short time - sufficient for the resin to melt. The powder is replaced in the leather bags for a few days, after which it is removed and kneaded well by means of wooden rods so that a certain amount of oily material appears on its surface. Kneading is continued until a material suitable for pressing into slabs has been produced.

Finally a fundamentally different method is used in some localities of the Indian Subcontinent. By quantity, little cannabis resin is made in this way. The plant material, apart from the main stems, is immersed in boiling water. This removes the resin from the fruiting and flowering tops (cf. the rendering of meat whereby when meat is boiled the animal fats are removed from the flesh). The cannabis which has been extracted is discarded (it may be used for culinary purposes), and when the extracting liquid cools, a layer of solidified resin forms on its surface. This resin may be removed and formed into slabs or whatever shape is favoured. The problem with this method is that water is introduced into the resin. This results in the slabs of resin frequently turning mousy as they age.
C. Liquid cannabis (Hashish oil)

Liquid cannabis is a liquid extract of either herbal cannabis material or of cannabis resin; the extract is often concentrated prior to trafficking. The reason for making liquid cannabis is to concentrate the psychoactive ingredients (e.g., THC). This may help the trafficker evade interdiction, because more psychoactive material can be contained in a smaller concealment. Of equal value to the trafficker is the ability to insert the liquid cannabis into concealments which cannot easily accommodate herbal or resin cannabis. Furthermore, it is easy to seal hermetically the liquid cannabis, thereby overcoming the possibility of detection by the odour emitted by the material.

Liquid cannabis, whether made from herbal or resin material, is prepared by a process similar to that used to percolate coffee. Alternately the process can be considered as being similar to soxhlet extraction undertaken in chemical laboratories to extract chemicals from solid materials, with continual refluxing of the extracting solvent.

The essential parts of the extraction apparatus are as follows:

(a) THE BOILING FLASK
A flask in which the extracting solvent can be boiled.

(b) THE EXTRACTION CONTAINER
A perforated basket which contains the material to be extracted (cf. coffee grounds); the extracting solvents, once they have passed through the material to be extracted, are returned to the boiling flask.

(c) THE CONDENSER
A condenser which cools the extracting solvent and allows it to fall onto the material to be extracted.

METHOD

A suitable quantity of chopped herbal material or small pieces of cannabis resin is placed in the extraction container. Organic solvent is placed in the boiling flask. Suitable organic solvents include ethanol, methanol, acetone, and petroleum ethers. The solvent is heated to boiling and the refluxing process commences. When the batch of cannabis or cannabis resin is fully extracted, heating is stopped and the apparatus allowed to cool. The extracted material in the perforated basket is discarded, as with spent coffee grounds. If necessary, a second fresh batch of cannabis or cannabis resin may be placed in the perforated basket and extracted with the same batch of solvent that had been used for the first extraction. This process can be repeated as often as required, using a number of batches of cannabis or cannabis resin with a single batch of extracting solvent. After the final batch of cannabis or cannabis resin has been extracted, the solvent in the
boiling flask may be concentrated by evaporation to the required consistency. The apparatus is dismantled and the unrequired solvent is boiled away. In some clandestine laboratories, especially in those countries where organic solvents are expensive or difficult to purchase, the excess solvent may be condensed for future use. In general, liquid cannabis, whether made from cannabis or cannabis resin, is prepared to have the consistency of a thick oil.

Alternately, if extraction of a single batch of cannabis or cannabis resin is thought to have made an extract of acceptable strength, the liquid in the boiling flask may be evaporated as described above.
II. DESCRIPTION OF ILLICIT CANNABIS PRODUCTS

A. Names and synonyms for illicit cannabis products

There are so many synonyms used for the various illicit cannabis products that it is beyond the scope of this manual to list them all. The reader is referred to the United Nations publication dealing with this subject - "The Multilingual Dictionary of Narcotic Drugs and Psychotropic Substances under International Control", (ST/NAR/1).

B. Physical appearance and chemical characteristics of illicit cannabis products

It must be stressed that no two cannabis products have exactly similar physical appearances. Produced from a highly variable natural product, by a batch process capable of wide variation, and subsequently subjected to processing and transformation for trafficking purposes, it is not surprising that cannabis products occur in such a multitude of forms. Those described here are just a selection, albeit the most common. Because material submitted for forensic examination bears no physical relationship to any type described here, that does not mean, of course, that it is not cannabis or a cannabis containing product.

This section should be read in conjunction with Chapter I "PRODUCTION OF ILLICIT CANNABIS PRODUCTS".

1. Herbal products (Marinuana)

(a) Cannabis grown in a temperate climate

Cannabis cultivated in Europe, the North America, and the southern parts of the Southern Hemisphere is bright green when growing; after harvesting some samples lose their green colour and turn yellow, but rarely brown coloured. Generally the fruiting and flowering tops are devoid of resin - unlike herbal cannabis from the Indian Subcontinent they are not sticky when compressed in the palm of the hand. For the same reason it is difficult to compress this material into slabs as can be easily done with, for example, West African Cannabis. Seeds are invariably present. European cannabis will contain a higher leaf content than North American cannabis, in which fruiting and flowering tops predominate.

Chemical characteristics: very variable, because the seeds have been imported, often illicitly, from many different regions where cannabis grows wild. Different cannabinoid profiles, with and without both CBD and THV, are encountered.
(b) Cannabis grown in tropical climate

North African cannabis

Rarely trafficked out of the region; a finely chopped light green or yellow green herb which contains no seeds or fibrous material. Chemical characteristic; identical to the resin produced in the region, i.e. both THV and CBD are low relative to THC.

West African and Caribbean Cannabis

When growing, the material is green; on harvesting and drying, it turns brown. Some samples retain their green colour. Generally, Caribbean cannabis retains its green colour more than West African. It is rare to find a dried sample of West African cannabis which is not brown. Colour apart, these two types of cannabis are physically and chemically very similar. In some samples of West African cannabis the fruiting and flowering tops have been destroyed in processing; many dark brown seeds are visible within the compressed mass of herbal material.

Until recent years Caribbean cannabis was of a low quality, containing many stems and stalks which are low in or completely devoid of the psychoactive constituents of cannabis. A recent trend has been the attempt to produce Sinsemilla; no samples completely free of seeds have yet been detected, but the amount of non-psychoactive containing material in these seizures is greatly reduced, and the fruiting and flowering tops of some seizures are comparable to those found in North American Sinsemilla.

Chemical characteristics: Both types lack CBD and have low THV:THC ratios.

Cannabis from Central Africa

Most samples are similar to West African cannabis, but a few are similar to those produced in the southern part of Africa. Chemical characteristic: Brown samples similar to West African cannabis in cannabinoid profile; green samples similar to southern African cannabis in cannabinoid profile.

Cannabis from Southern Africa

When dried, and prepared for trafficking, this material generally resembles cannabis grown in temperate areas. It is both much greener and contains a higher proportion of leaves than West African cannabis.

Chemical characteristics: No CBD. THV and THC in roughly equal amounts.

Cannabis from South America

Similar to Caribbean cannabis; samples vary enormously in quality from products containing high proportion of fibrous, non psychoactive containing material, to Sinsemilla type products consisting of only fruiting and flowering tops.
Chemical characteristics: Similar to Caribbean. The occasional sample contains a small amount of CBD.

Cannabis from the Indian Subcontinent

Three types may be trafficked: (1) brown fruiting and flowering tops which are high in resin and sticky to the palm of the hand; (2) dark green-brown material similar to some samples from West Africa; (3) green, largely leafy material devoid of fruiting and flowering tops.

Chemical characteristics: (1) CBD present, THC and THV approximately equal; (2) resembles West African cannabis; (3) similar to type (1) but low levels of cannabinoids.

Cannabis from South East Asia

"Huđda Sticks" - see Chapter I "PRODUCTION OF ILLICIT CANNABIS PRODUCTS".

Chemical characteristics: Normally only THC, no CBD and negligible THV.

2. **Cannabis resin products**

North African cannabis resin

Yellow brown, thin rectangular slabs wrapped in cellophane which rarely bears a mark. Coin imprints occur from time to time.

A recently introduced product is superficially similar to cannabis resin from the Indian subcontinent - it is almost black on the surface, and internally is much darker than the yellow brown slabs. This type is in the shape of blocks of toilet soap, and is wrapped in cellophane. No markings but coin imprints on some samples.

Chemical characteristics: CBD generally low relative to THC, and THV very low. Cannabinoid acids present in variable amounts from seizure to seizure.

East Mediterranean cannabis resin

Red-brown and powdery. Invariably trafficked inside cloth bags, which, until a few years ago were always white, but which occasionally bore an ink stamp. Nowadays the cloth bags are sometimes brightly coloured, with or without ink stamps. Slabs up to 0.5 kg in weight, occasionally 1 kg. The resin bears the imprint of the cloth when unwrapped.

Chemical characteristics: CBD present to greater extent than in any other cannabis resin product. THV very low. Acids, mostly CBDA, are also present to greater extent than in any other cannabis resin product.
North Eastern Mediterranean cannabis resin

Greenish-brown powder or (rarely) as small thin wafers of brittle material wrapped in cellophane.

Chemical characteristics: CBD much less than THC. THV low. Acids present in high amounts.

Cannabis resin from the Indian Subcontinent

A great variety of products are made. In quantity the rectangular slabs, black on the surface, and dark green within, which originate from the north west part of the subcontinent, predominate over all other types. These slabs, which frequently bear an embossed mark on the surface, are often wrapped in dark cellophane prior to trafficking. A few slabs are square. The slabs vary in thickness from 5 mm to 20 mm and are odorous and pliable when freshly made. On aging they lose their odour and become brittle. Typically the slabs weigh 0.25, 0.5 or 1 kg, but higher weights are occasionally encountered. Slabs from the northern part of the Indian Subcontinent are often mouldy, and crumble readily.

Other cannabis resin products from the Indian Subcontinent include sticks, often in bundles, small balls (1 cm in diameter), large balls (8 cm in diameter), and irregular shaped pieces of resin. All of these products are dark brown or black on the surface and dark green or dark brown internally.

Chemical characteristics: Varies as greatly as the physical variation. Generally, cannabinoid acid content is lower than for the Mediterranean cannabis resin. The cannabinoid content of the slab variety is less than that of the Eastern Mediterranean resin, but greater than that of the North African resin; it can be very low or absent in some other types. Generally THV is low, but some types contain more THC than any other cannabis resin, and accordingly reach a higher value when sold in the illicit traffic.

3. Liquid cannabis (Hashish oil)

Liquid cannabis is a dark viscous oil with a characteristic odour. When diluted with organic solvents, it becomes either a green coloured or brown coloured solution. The colour is not necessarily an indication of origin because the maturity of the plant material and the solvent used to prepare the liquid cannabis may influence its colour. Generally, liquid cannabis, which on dilution produces a green coloured solution, has been made from herbal cannabis, and liquid cannabis, which on dilution, produces a brown solution, has been made from cannabis resin. Liquid cannabis cannot be diluted with water; if water is added to liquid cannabis which has been diluted with, for example, ethanol, an emulsion is formed.

Some liquid cannabis is not concentrated before being trafficked; this product has the consistency (and often the odour) of an organic solvent, and may be green or brown coloured.
Chemical characteristics: The cannabinoid profile is, with one important difference, similar to that of the cannabis or cannabis resin from which the liquid cannabis has been made. The difference is that liquid cannabis is devoid of cannabinoid acids. The major producing regions of liquid cannabis are the resin producing countries of the Mediterranean and of the Indian Subcontinent, and the herbal cannabis producing Caribbean. The neutral cannabinoid profiles of the liquid cannabis from these regions are similar to those of the resin or herbal products produced in these regions. However, the cannabinoids form a much higher proportion of the material.

Typical THC levels in the three illicit cannabis products:

- Herbal cannabis: 0.5 - 5%
- Resin cannabis: 2 - 10%
- Liquid cannabis: 10 - 30%

It should be noted that these values are only a guide to levels likely to be encountered by the forensic analyst. Many samples of herbal, resin or liquid cannabis will have a THC content outside these limits.

In addition to the neutral cannabinoids, seized cannabis material may also contain, in greatly varying levels, the corresponding cannabinoid acids (see Chapter III) as well. Although there does not seem to be a consistent relationship between the origin of the material and the actual cannabinoid acid content and composition, the forensic chemist may be called upon, depending on national legislation, to demonstrate the presence and/or determine the content of these acids separately in the sample under examination.
III. CHEMICAL CONSTITUENTS OF FORENSIC SIGNIFICANCE

TETRAHYDROCANNABINOL

THC, Δ⁹-THC
(-)-Δ⁹-trans-Tetrahydrocannabinol

![Molecule Structure]

\[\text{C}_{21}\text{H}_{30}\text{O}_2 \]
\[\text{M.Wt} = 314.5 \]

Melting points (°C)

Viscous oil

Solubilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>insoluble</td>
</tr>
<tr>
<td>Ethanol</td>
<td>soluble</td>
</tr>
<tr>
<td>Chloroform</td>
<td>soluble</td>
</tr>
<tr>
<td>Hexane</td>
<td>soluble</td>
</tr>
</tbody>
</table>

CANNABINOL

CBN

![Molecule Structure]

\[\text{C}_{21}\text{H}_{26}\text{O}_2 \]
\[\text{M.Wt} = 310.4 \]

Melting points (°C)

76 - 77

Solubilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>insoluble</td>
</tr>
<tr>
<td>Ethanol</td>
<td>soluble</td>
</tr>
<tr>
<td>Chloroform</td>
<td>soluble</td>
</tr>
<tr>
<td>Hexane</td>
<td>soluble</td>
</tr>
</tbody>
</table>

CANNABIDIOL

CBD

![Molecule Structure]

\[\text{C}_{21}\text{H}_{30}\text{O}_2 \]
\[\text{M.Wt} = 314.5 \]

Melting points (°C)

66 - 67

Solubilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>insoluble</td>
</tr>
<tr>
<td>Ethanol</td>
<td>soluble</td>
</tr>
<tr>
<td>Chloroform</td>
<td>soluble</td>
</tr>
<tr>
<td>Hexane</td>
<td>soluble</td>
</tr>
</tbody>
</table>
Other cannabinoids which are referred to in this booklet, together with their abbreviations, are as follows:

Cannabinolic acid	CBNA
Cannabidiolic acid *	CBDA
Cannabichromene	CBCh
Cannabichromenic acid *	CBChA
Cannabigerol	CBG
Cannabigerolic acid *	CBGΩ
Cannabivarin	CBV
Tetrahydrocannabinolic acid*	THCA
Tetrahydrocannabivarin	THV
Tetrahydrocannabivarinic acid,*	THVA

* In the section dealing with the TLC of cannabis products, reference is made to "cannabinoid acids". This means any mixture of cannabinoid acids which may be encountered in a cannabis product.

The reader is referred to the following books and review papers which deal with cannabinoid chemistry at length:

IV. THE ANALYSIS OF ILLICIT CANNABIS PRODUCTS

A. Sampling

The principal reason for a sampling procedure is to produce a correct and meaningful chemical analysis. Because most methods—qualitative and quantitative—used in forensic science laboratories for the examination of drugs require very small aliquots of material, it is vital that these small aliquots be entirely representative of the bulk from which they have been drawn. Sampling should be undertaken to conform to the principles of analytical chemistry, as laid down, for example, in national pharmacopoeias or by such organizations as the Association of Official Analytical Chemists.

There may be situations where, for legal reasons, the normal rules of sampling and homogenization cannot be followed if, for example, the analyst wishes to preserve some part of an exhibit as visual evidence. Alternately, it may be necessary to perform separate chemical analyses on two slabs of cannabis resin, rather than a single analysis on one slab which is representative of both, because each has been separately exhibited by the seizing officer, and the legal system within which the analyst works requires an individual result on every exhibit which is to be taken before the courts.

To preserve valuable resources and time, forensic analysts should seek, on all possible occasions, to use an approved sampling system and thereby reduce the number of quantitative determinations needed. To facilitate such an approach, the forensic analyst may need to discuss individual situations with both seizing officers and the legal personnel with whom he or she works.

Cannabis products represent a special problem to the analyst in that the items under examination are often of enormous size and the chemical tests used require only a very small aliquot. Homogenization is not appropriate nor useful in such situations. The analyst must ensure that the entire item or seizure is a controlled drug. The importance of visual examination, which plays a very minor role in the examination of the powder drugs, cannot be over-emphasized in the analysis of cannabis products.

Cannabis is most frequently encountered as a loose herbal material, although in recent years there has been a distinct trend to trafficking herbal cannabis in compressed slabs. Because a much greater quantity of cannabis can be compacted into a compressed slab, there is much less risk of detection when trafficking. Compressed slabs are also much easier to wrap, for example in thick masking tape which prevents the release of the distinctive odour associated with cannabis. Moreover, the compressed cannabis can be formed to fit exactly into commercially made tin-cans, which are then labelled to give the impression that they contain the foodstuffs of legitimate commerce.
Cannabis resin is almost always in slab form. In large scale illicit traffic the slabs are invariably wrapped. The materials used to wrap cannabis resin may be applied at the point of manufacture (e.g. Eastern Mediterranean resin) or it may be applied prior to trafficking (e.g. South West Asian resin). For trafficking purposes other wrappings may be added to those traditionally associated with the resin produced in a particular country. Almost always these wrappings are either plastic bags or thick plastic adhesive tape, or a combination of both. A seizure of cannabis may be of material within a single container or package, or the material may be inside a number of packages.

1. Sampling of single package items

The simplest sampling situation is where the submitted item consists of a single package of material - for cannabis most often the material will be a loose herb. The material should be removed from its container or wrappings, placed in a clean clear plastic bag and the net weight recorded. The analyst should then carefully use visual testing to ensure that all the exhibit is material which is controlled under the legislation within which he or she works. The sequence of chemical tests can then follow. Homogenization of the material need only be applied in certain analytical situations, e.g. if the analyst wishes to quantify a particular cannabinoid. The simplest way of homogenizing cannabis (herbal or resin forms) is to pass the material through progressively finer sieves. In quantifying cannabinoids care should be taken to relate the content found to the total amount of cannabis plant material which was originally taken for analysis i.e. the content should not be quoted as a percentage of the weight of the final sieved material which was subjected to extraction.

2. Sampling of items consisting of more than one package

The analyst should examine the contents of all packages by eye, and possibly by simple colour test or TLC to determine:

1. If all packages contain suspect cannabis or cannabis-containing material, and/or

2. If one or more packages contain material different to that of the majority of packages. The simplest indicator is the physical appearance of the material. If one or more packages obviously differ in content, these should be segregated and subjected to separate analysis.

The composing of multiple container items is as follows:

(a) If there are less than 10 packages - all packages should be sampled.

(b) If there are 10 - 100 packages - randomly select 10 packages.

(c) If there are more than 100 packages - randomly select a number of packages equal to the square root of the total number of packages rounded to the next highest integer.
If the material in all the packages is found by visual examination to be the same then the analyst may adopt one of two approaches:

(1) the contents of a number of packages may be combined and the combined bulk material may then be homogenized;

(2) alternately, chemical testing may be applied to a number of the packages.

When different types of material have been identified in the various packages then each sub-group should be composited in an identical fashion to that previously outlined.

Sampling errors for quantitative methods are reduced if large aliquots of material are subjected to sequential dilution with the extraction solvent. If the cost of solvent presents no problem and if the taking of a large aliquot will not significantly reduce the size of the exhibit to be taken to court, then this approach may be adopted. However when large amounts of material are used for the first extraction, it may be necessary that the solvent should be added by pipette to avoid error due to insoluble materials.

3. Sampling of materials containing large aggregates

If the aggregates can be easily reduced to small particles then this should be the approach, and sampling procedure followed as outlined previously. If the material cannot be easily broken down, then random samples should be drawn from at least two different parts of the item. In the case of large compressed blocks of herbal material, the analyst should ensure that the block is entirely composed of cannabis. This is achieved by breaking open the block.

B. Physical examination

1. Macroscopic characteristics

Many of the morphological characteristics of individual cannabis plants are greatly influenced by environmental factors such as room for growth, amount of light, nutrients and water, and by hereditary factors such as the seed strain from which it is derived. There is an enormous variation in size and shape. Typically 1 to 3 meters represent the height that most plants attain (when cultivated in open ground it can grow to a height of 6 meters in a four to six month growing season) but some strains produce plants which are rarely more than 1 meter in height. The plant is erect and the extent of branching, like the plant height, depends on both environmental and hereditary factors. The side branches are opposite on the main stem. However, on the extremities of the plant, the leaf arrangement reverses from decussate to alternate (see Figure 1).
The compound leaves vary in size according to the overall size of the plant. Each leaf has a slender stalk up to 6 cm in length. The three to eleven (mostly five, seven or nine) thin and soft-textured leaflets are narrowly lanceolate. The leaflet has a narrow wedge-shaped base, a coarsely saw-toothed edge and a long drawn-out pointed tip; the teeth are sharp and point towards the tip of the leaflet; the veins run out obliquely from the midrib to the tips of the teeth. The leaflets of a single leaf are uneven in size, the largest being up to 15 cm. They are covered with glandular hairs (trichomes) on the upper surface, more profuse and longer hairs on the underside.

The flowers are very abundant and they are either male (staminate) or female (pistillate). Most plants are dioecious, but some are monoecious. Female plants are very leafy up to the top, whereas male plants have the leaves on the inflorescence fewer and much further apart.

The male inflorescence is loosely arranged, much branched and many flowered, standing out from the leaves, with individual flowering branches up to 18 cm long; it is covered by minute bristly hairs.

The female inflorescences do not project beyond the leaves; they are compact, short and contain fewer flowers. The bract or calyx completely covers the ovary, and forms a basally swollen tubular sheath about 2 mm long, out of which two stigmas project. This sheath is covered with slender hairs and short-stalked or stalkless circular glands.
Figure 1. *Cannabis sativa* L.

1. flowering shoot
2. male inflorescence
3. male flower
4. female inflorescence
5. female flower
6. fruit
7. seed
2. Microscopic characteristics

The very abundant trichomes which are present on the surface of the fruiting and flowering tops of cannabis are the most characteristic features to be found in the microscopic examination of cannabis products (Figure 2).

The diagram shows these various features, as follows:

A. Non glandular hairs (trichomes), numerous, unicellular, rigid, curved, with a slender pointed apex and an enlarged base, usually containing a cystolith but frequently broken and the cystolith freed (especially in cannabis resin) (N.C. TR. and G.TR.).

B. The glandular trichomes occur in three forms:

- sessile glands with one-celled stalk (generally on lower epidermis) (S.G.)

- long multicellular stalk form (generally on the bracteoles surrounding the female flowers) (M.G.TR.).

The head in both forms is globular consisting of eight to sixteen cells. It is frequently detached (especially in cannabis resin).

- small glandular trichome, with one-celled stalk (G.T.R.)

Note

Macro- and/or microscopic examination are inappropriate in the forensic examination of some cannabis products. Both micro- and macroscopic features of herbal cannabis will not be present in liquid cannabis. The forensic examination of liquid cannabis is essentially based on chemical techniques, although the forensic chemist should be aware of the physical appearance and properties of liquid cannabis. The macroscopic characteristics and, to a lesser degree, the microscopic characteristics of cannabis products are also destroyed when the material is smoked. Generally, chemical analysis will produce more useful results in the examination of cannabis products which have been smoked, although there are occasions when microscopic evidence is still available.

For detailed descriptions of the morphological and microscopic characteristics of cannabis, the reader is referred to the following books and review papers:

Figure 2. Microscopic characteristics of Cannabis

G.TR. small glandular trichomes
M.G.TR. multicellular multiseriate glandular trichomes
S.G. sessile glands
NC.TR. non-cystolithic trichomes
C.TR. cystolithic trichomes
C. Presumptive tests

1. Colour tests

It must be stressed that positive results to colour tests are only presumptive indications of the possible presence of cannabis products or material containing cannabis products. A few other materials, often harmless and uncontrolled by national legislation or international treaties, may give similar colours with the test reagents. It is mandatory for the analysts to confirm such results by the use of an alternative technique.

All colour test reagents should be carefully scrutinized to ensure that they have not decomposed. Colour test reagents that are themselves coloured may lead to erroneous conclusions about the nature of the substance under test.

(a) Fast blue B salt test

METHOD 1. (test performed on filter paper)

REAGENTS

Solid reagent. Fast blue B salt (di-o-anisidinetetrazolium chloride). The solid reagent is made by diluting Fast blue B salt with anhydrous sodium sulphate (1:100).

Solution 1. Petroleum ether.

Solution 2. A 10% w/w aqueous solution of sodium bicarbonate.

METHOD

Fold two filter papers into quarters and open partly to form a funnel; place a small amount of pulverized cannabis plant or resin or a very small drop of liquid cannabis into the centre of the upper paper; add two drops of solution 1 allowing the liquid to penetrate to the lower filter paper; separate the two filter papers, discarding the upper and allowing the lower filter paper to dry; add a very small amount of the solid reagent to the lower filter paper and then add two drops of solution 2.

RESULTS

A purple-red coloured stain at the centre of the filter paper is indicative of a cannabis product; this colour is a combination of the colours of the different cannabinoids which are the major components of cannabis: THC = red, CBN = purple, CBD = orange.
NOTES

1. When freshly made the solid reagent will be almost white or a very pale yellow colour. It should be stored in a cold dry place – within a plastic bag; inside the ice-making compartment of a refrigerator is ideal. If this reagent decomposes, it assumes a grey colour and should be discarded.

2. Fast blue B salt is claimed by some authorities to be a potential carcinogen; the same authorities assert that the dye Fast blue BB is less suspect as a potential carcinogen. Fast blue BB gives equally acceptable results in either of the two methods and, if possible, should be the dye used for colour tests for cannabis products.

3. To increase the specificity of this test, it is important to use an amount of suspect material no larger than the size of a match-head, and to use two filter papers in the test. The upper filter paper, which is discarded before colour production is initiated, prevents coextracted dyes present in other vegetable materials from reaching the lower filter paper and producing a false positive reaction.

4. The 10% solution of sodium bicarbonate (solution 2) produces the alkaline conditions which enhance the intensity of the colour reaction between the cannabinoids and the Fast blue B salt.

METHOD 2. (test performed in a test tube)

Solid reagent. The solid reagent is made by diluting Fast blue B salt with anhydrous sodium sulphate (2.5:100).

Solution 1. Chloroform.

Solution 2. 0.1N aqueous sodium hydroxide solution.

RESULT

Colours, as described in Test 1 above, in the lower chloroform liquid layer indicate a positive result. The colour of the upper layer should be ignored.
(b) The rapid Duquenois test (Duquenois-Levine test)

REAGENTS

Solution 1. Five drops of acetaldehyde and 0.4 g of vanillin are dissolved in 20 ml of 95% ethanol.

Solution 2. Concentrated hydrochloric acid.

Solution 3. Chloroform.

NOTE

Solution 1 must be stored in a cool dark place and discarded if it assumes a deep yellow colour.

METHOD

Place a small amount of the suspect material in a test tube and shake with 2 ml of solution 1 for one minute; add 2 ml of solution 2 and shake the mixture and then allow it to stand for ten minutes; if a colour develops add 2 ml of solution 3.

RESULTS

If the lower (chloroform) layer becomes violet coloured this indicates the presence of a cannabis product.
D. Thin layer chromatography

DEVELOPING SOLVENTS

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>Solvent</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Petroleum ether</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Diethyl ether</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>Cyclohexane</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Di-isopropyl ether</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Diethylamine</td>
<td>8</td>
</tr>
<tr>
<td>C (for cannabinoid acids)</td>
<td>N-hexane</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Dioxane</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>10</td>
</tr>
</tbody>
</table>

Preparation of solutions to be applied to the TLC plate

Illicit cannabis samples

1. It should be noted that if the sole purpose of the TLC examination is qualitative (i.e. to confirm the micro- or macroscopic evidence that the suspect material is cannabis) then homogenization of herbal material need not be undertaken. Those parts of the cannabis plant known to contain the highest levels of cannabinoids (i.e. the flowering and fruiting tops and the leaves) may be selected for extraction for TLC examination. Little, if any, cannabinoids are present in the seeds and major stems of the plant.

The material (herbal or resin) should be reduced to small aggregates homogenized and pulverized to ensure as rapid and complete an extraction as possible. For cannabis resin and liquid cannabis the forensic scientific literature indicates that these materials are essentially homogeneous as a result of their production.

2. Suitable quantities for extraction for TLC analysis are about 1 g of herbal cannabis, 0.5 g of resin cannabis and 0.1 g of liquid cannabis. The extraction scheme should be designed to produce final solutions at strengths of 0.5 mg of tetrahydrocannabinol per mL. Typical levels of tetrahydrocannabinol in materials were listed in Chapter II "DESCRIPTION OF ILICIT CANNABIS PRODUCTS".

3. Since cannabinoids are easily soluble in most organic solvents, petroleum ether, n-hexane, toluene, chloroform, methanol or methanol:chloroform 9:1 are equally suitable solvents for their extraction. It should, however, be noted that petroleum ether and n-hexane will give a relatively clean extract but will extract only the neutral cannabinoids quantitatively while the other solvents and their combinations give quantitative extraction of the cannabinoid acids as well. The final selection of the extracting solvent will be left to the discretion of the forensic chemist (see also Chapter IV (E) "Gas liquid chromatography").
4. It should not be necessary to filter solutions prepared only for TLC or GC; application of the supernatant liquid will produce reliable results.

A suitable extraction procedure is as follows:

1 g of herbal cannabis (or 0.25 g of cannabis resin or 0.1 g of liquid cannabis) is extracted with 20 ml of acetone (or n-hexane or toluene or chloroform or methanol or methanol:chloroform 9:1) for 30 minutes at room temperature by shaking or for 15 minutes in an ultrasonic bath. The extract is filtered and its volume is adjusted to 25 ml by washing the filter paper and the residue with the extracting solvent.

Standard solutions

The cannabinoid standard solutions should be prepared to be 0.5 mg per ml in methanol (or in the internal standard solution) and should be stored in a dark, cold place, preferably in a refrigerator.

VISUALIZATION

The plates must be dried prior to visualization. This can be done at room temperature or, more quickly, by use of hot air. In the latter case care must be exercised that no component of interest is decomposed.

Visualization method:

Spray reagent: Solution of Fast blue B salt.

This may be prepared in two ways:

Method 1: Approximately 50 mg of Fast blue B is dissolved in 20 ml of 0.1 N NaOH.

Method 2: Approximately 50 mg of Fast blue B is dissolved in 1 ml of water and 20 ml of methanol; to facilitate solution the material may be first dissolved in the 1 ml of water to which the 20 ml of methanol are added.

N.B. Whichever method is used, the solution of Fast blue B salt must be freshly made. An acceptable frequency is once per day.

Note

The reader is referred to the health-risk warning given about Fast blue B salt in the colour tests section.

It is important for proper colour development that the TLC plate be made alkaline. One way of achieving this is to dissolve the Fast blue B dye in 0.1N sodium hydroxide (see method 1 above). Alternately, diethylamine may be sprayed on the TLC plate before the Fast blue B solution.
Of equal importance in the forensic field is the ability to store the visualized plate, often for years, after it was developed. Preservation is best achieved by subjecting the plate to a third and final spraying, this time with the same diethylamine solution that was initially used on the plate. Thus the spraying sequence is:

- Diethylamine
- Fast blue B solution
- Diethylamine

The plates are dried by hot air, or overnight at room temperature. Finally, the plates are sealed inside clear plastic bags. Such plates have a long lifetime without darkening.

RESULTS

$R_f \times 100$ values:

<table>
<thead>
<tr>
<th>Compound</th>
<th>DEVELOPING SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CRCh</td>
<td>24</td>
</tr>
<tr>
<td>CRV</td>
<td>27</td>
</tr>
<tr>
<td>CRN</td>
<td>27</td>
</tr>
<tr>
<td>THV</td>
<td>32</td>
</tr>
<tr>
<td>THC</td>
<td>32</td>
</tr>
<tr>
<td>CBD</td>
<td>36</td>
</tr>
<tr>
<td>THCN</td>
<td>s</td>
</tr>
<tr>
<td>CBDA</td>
<td>s</td>
</tr>
</tbody>
</table>

(s) = streak, not spot, produced on the TLC plate.

* These values are subject to variation depending on laboratory conditions (e.g. temperature, humidity, drafts) and other parameters (e.g. age and quality of materials used).
E. Gas liquid chromatography

1. Packed column technique

Detector: FID (Hydrogen 30 ml per minute, air 300 - 450 ml per minute).

Column: 6 ft (or 2 m), I.D. 2 to 4 mm.

Packing: 3% OV-17 or SE-30 or OV-1

Carrier gas: Nitrogen at 30 ml per minute.

Operating conditions:
- Injector temperature: 270°C.
- Oven temperature: between 240-260°C isotherm, (depending upon the actual packing)
- Detector temperature: 300°C

Internal standard: n-tetradecane or n-docosane or other suitable n-alkene; other standards frequently used: androst-4-ene-3,17-dion, dibenzylphthalate or cholestanol.

Preparation of solutions for gas chromatography

METHOD 1. - without derivatization

For packed column GC analysis a commonly used method is that an injection of 5 µl of solution will result in 1 µg of THC being injected into the column. The dilution scheme should take account of the likely cannabinoid content of the starting material (see chapter II). A typical scheme would be as follows:

Illicit cannabis samples

For qualitative GC analysis the extracts prepared for TLC may be used directly. Suitable injection volumes may be 1-5 µl depending upon the actual THC concentration of the sample.

For quantitating the main neutral cannabinoids a 10 µl aliquot is taken of the same extract. After evaporating the solvent in vacuo the residue is redissolved in 10 ml of methanol:chloroform (1:1) containing 2 mg/ml α-tetradecane as internal standard.

Injection volume: 1-5 µl.

Standard solutions - same as for TLC
An alternative approach is:

0.5 g of herbal cannabis (0.1 g of cannabis resin; 0.05 g of liquid cannabis) is extracted with 5 ml of acetone containing 0.5 mg/ml n-docosane in a stopped flask at room temperature by frequently shaking the flask for 30 min. 1 μl is injected of the clear supernatant. This extract can also be used for TLC and HPLC analysis.

METHOD 2 - with derivatization

Illicit cannabis samples

2 ml aliquots of the extracts prepared for TLC or GC analysis without derivatization (Method 1) can be used for silylation. Derivatizing agents frequently used are:

- N,O-bis(trimethylsilyl)acetamide (BSA)
- N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA)
- N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA).

An alternative approach is:

1 g of herbal cannabis (0.25 g of cannabis resin or 0.1 g of liquid cannabis) is extracted with 40 ml methanol:chloroform (9:1) using ultrasonic agitation for 15 minutes. The cannabis is removed by filtration. 4 ml aliquot of the filtered extract is taken and the solvent is removed under vacuum until a paste is produced. 1.5 ml of anhydrous pyridine containing 1 mg per ml of androst-4-ene-3,17-dione is added and the solution is subjected to ultrasonic agitation until the paste has redissolved. 0.5 ml of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane is added. The reaction mixture is heated for 10 minutes at 80°C. 2.5 μl of the reaction mixture is injected.

Standard solutions

2 ml aliquots of the cannabinoid standards are treated the same way.

The content (%) of any component can be calculated using the general formula:

\[C_x^w = \frac{C_{r. std.}}{C_{samp.}} \times \frac{A_x / A_{int. std. in samp. chrom.}}{A_{r. std.} / A_{int. std. in std. chrom.}} \times 100 \]

Where:

\[C_x^w \] = content of component x in the sample (w/w %)
C_{r. std.} = concentration of substance x in the standard reference solution (w/w%)

C_{Sam.} = concentration of the sample (w/v%).

A_x = peak area for substance x obtained during the sample chromatography.

A_{r. std.} = peak area for substance x obtained during the standard solution chromatography.

A_{vst. std. in sam. chrom.} = peak area of the internal standard obtained during the sample chromatography.

A_{vst. std. in std. chrom.} = peak area of the internal standard obtained during the standard chromatography.

For alternative packed column GC systems see:

2. Capillary column technique

Detector: FID.

Column: OV-1 - chemically bonded fused silica capillary
10 m by 0.52 mm I.D.

Film thickness: 1 µm

Carrier gas: Helium

Flow Rate: 2 ml per min.

Injection technique: split-splitless

Operating temperatures:
- Injector: 290°C
- Oven: 240°C
- Detector: 290°C

Preparation of solutions for chromatography

See the section dealing with preparation of solutions for TLC or gas chromatography in the packed column section; both non-derivatization and derivatization methods may be used with capillary column GC analysis of cannabis products.

For alternative capillary GC systems see:

F. High performance liquid chromatography

1. Isocratic technique

METHOD 1

Operating conditions

<table>
<thead>
<tr>
<th>Column</th>
<th>250 mm by 4.6 mm i.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing material</td>
<td>Octadecyl-silica (medium load of C18 on Partisil 5)</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>0.02 N H2SO4 20% v/v</td>
</tr>
<tr>
<td></td>
<td>Methanol 80% v/v</td>
</tr>
<tr>
<td>Flow rate</td>
<td>2.0 ml per minute</td>
</tr>
<tr>
<td>Detection</td>
<td>UV at 220 nm or UV at 254 nm</td>
</tr>
<tr>
<td>Injection volume</td>
<td>10 µl by syringe or loop injector.</td>
</tr>
<tr>
<td>Quantitation</td>
<td>by peak areas, internal standard method.</td>
</tr>
<tr>
<td>Internal standard</td>
<td>di-n-octyl phthalate.</td>
</tr>
</tbody>
</table>

Preparation of solutions for chromatography

Illicit cannabis samples

Aliquots corresponding to 200 mg of herbal cannabis, 50 mg of cannabis resin or 20 mg of liquid cannabis of any of the extracts prepared for TLC or GC analysis are evaporated in vacuo and the residue is redissolved in 1 ml of methanol:chloroform (9:1) containing 0.8% (g/v) di-n-octyl phthalate as internal standard.

Standard solutions

Using stock solutions of cannabinoids a series of calibration solutions are prepared in the range 0.1 to 10 µg per ul. A constant addition of 13 µg per ul of di-n-octylphthalate is made to each standard solution.
METHOD 2
Operating conditions
Column 150 mm by 4.6 mm I.D.
Packing material Octadecyl-silica (Spherisorb S3 ODS 2)
HPLC grade 3 μm
Mobile phase Methanol 85
Water 14.2
Acetic acid 0.8
Flow rate 1.5 ml per minute
Operating temperature ambient
Detection UV at 230 μm
Injection volume 2-3 μl
Quantitation by peak areas, internal or external standard methods

Preparation of solutions for chromatography
I illicit cannabis samples
See Method 1.
An alternative approach is:

150-200 mg of herbal cannabis, 50-100 mg of cannabis resin or 5-10 mg of liquid cannabis are extracted for 15 minutes (ultrasonic agitation) in a 2.5 ml screw-topped bottle with heat-stable PTFE seal. The extracting solvent is 1 ml of methanol:chloroform (9:1) containing 0.8% (g/v) di-n-octyl phthalate as internal standard. The mixture is centrifuged for 5 minutes at 3500 r.p.m. and the supernatant liquid is used for analysis.

Standard solutions
Using stock solutions of cannabinoids a series of calibration solutions are prepared in the range 0.1 to 10 μg per μl. A constant addition of 13 μg per μl of di-n-octylphthalate is made to each standard solution. 5 μl of each concentration is injected.
RESULTS

Elution orders are as follows (retention times in minutes)*:

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>METHOD 1</th>
<th>METHOD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBV</td>
<td>--</td>
<td>4.0</td>
</tr>
<tr>
<td>CBD</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>CBG</td>
<td>2.5</td>
<td>4.1</td>
</tr>
<tr>
<td>THV</td>
<td>--</td>
<td>4.6</td>
</tr>
<tr>
<td>CBDA</td>
<td>3.5</td>
<td>4.6</td>
</tr>
<tr>
<td>CBGA</td>
<td>5.0</td>
<td>5.5</td>
</tr>
<tr>
<td>CRN</td>
<td>5.0</td>
<td>5.7</td>
</tr>
<tr>
<td>THC</td>
<td>6.0</td>
<td>6.4</td>
</tr>
<tr>
<td>THVA</td>
<td>--</td>
<td>7.7</td>
</tr>
<tr>
<td>CBCh</td>
<td>8.0</td>
<td>7.7</td>
</tr>
<tr>
<td>CBNA</td>
<td>12.0</td>
<td>--</td>
</tr>
<tr>
<td>THCA</td>
<td>14.0</td>
<td>11.4</td>
</tr>
<tr>
<td>CBChA</td>
<td>17.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Int. std.</td>
<td>19.0</td>
<td>17.6</td>
</tr>
</tbody>
</table>

* These values are subject to variation depending on laboratory conditions (e.g. temperature, humidity, drafts) and other parameters (e.g. age and quality of materials used).

2. Gradient technique

METHOD 1

Operating conditions

<table>
<thead>
<tr>
<th>Column</th>
<th>250 mm x 4.6 mm I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing material</td>
<td>Ultrasil-Octyl HPLC grade 10 μm</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>A. Acetonitrile B. Water (deionized and filtered through 0.45 μm filter)</td>
</tr>
</tbody>
</table>

Gradient program

(1) At the start of chromatographic development: 25% A, 75% B.
(2) 36 minute linear gradient.
(3) Final composition: 85% A, 15% B.
Flow rate 2.0 ml per minute
Detection UV at 254 nm
Oven temperature 40°C
Injection volume 20 µl
Quantitation by peak areas, internal standard method
Internal standard di-n-octyl phthalate.

Preparation of solutions for chromatography
See previous section: Isocratic technique, Method 1.

METHOD 2
Operating conditions
Column
Two columns are used in this method under identical operating conditions.

| Column (1) | 150 mm x 4.6 mm I.D. |
| Packing material | Spherisorb S3 ODS2 HPLC grade 3 µm |

| Column (2) | 250 mm x 5.0 mm I.D. |
| Packing material | Spherisorb S5 ODS HPLC grade 5 µm |

Mobile phase: A. Methanol
B. 0.02N H₂SO₄

Solvent programme: (1) At the start of chromatographic development: 80% A, 20% B.
(2) 20 minute linear gradient.
(3) Final composition: 90% A, 10% B.

Flow rate: 1.5 ml per minute
Operating temperature: Ambient
Detection: UV at 230 nm
Injection volume: 2-3 µl

Preparation of solutions for chromatography
See previous section: Isocratic technique, Method 2.
RESULTS

Elution profile is as follows (retention times in minutes)*:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBV</td>
<td>7.4</td>
</tr>
<tr>
<td>CBD</td>
<td>7.8</td>
</tr>
<tr>
<td>CBG</td>
<td>8.3</td>
</tr>
<tr>
<td>TRV</td>
<td>8.6</td>
</tr>
<tr>
<td>CBDA</td>
<td>9.4</td>
</tr>
<tr>
<td>CBGA</td>
<td>11.8</td>
</tr>
<tr>
<td>CBN</td>
<td>12.0</td>
</tr>
<tr>
<td>THC</td>
<td>13.7</td>
</tr>
<tr>
<td>THVA</td>
<td>15.6</td>
</tr>
<tr>
<td>CBCh</td>
<td>16.9</td>
</tr>
<tr>
<td>THCA</td>
<td>21.5</td>
</tr>
<tr>
<td>CBChA</td>
<td>23.1</td>
</tr>
</tbody>
</table>

* These values are subject to variation depending on laboratory conditions (e.g. temperature, humidity, drafts) and other parameters (e.g. age and quality of materials used).

For alternative HPLC techniques see:
